LA CULTURA CHE ACCOGLIE BORGHI COMACINI IN RETE

PNRR M1C3 - INVESTIMENTO 2.1 ATTRATTIVITA'DEI BORGHI STORICI: "LA CULTURA CHE ACCOGLIE BORGHI COMACINI IN RETE" CUP F99122000130006

3.1-LINEA DI AZIONE 1 - Intervento 10

"Manutenzione Straordinaria Immobile Veglio ex Latteria"

PROGETTO ESECUTIVO RELAZIONE DI PROGETTO IMPIANTI MECCANICI Rev.02

Committente:

Comune di CERANO D'INTELVI

Progettista:

Studio ZPPR - Via Provinciale, 167 Centro Valle Intelvi (Co)

Arch. Cristina Zili (CO 2035) - Per.ind. Massimiliano Peduzzi (CO 1168) - Ing. Paolo Peduzzi (CO 2744) - Per.ind. Mattia Righetti (CO 2019) -

DATA

TIMBRO E FIRMA DEL PROGETTISTA

FIRMA DEL RUP

Marzo 2024

COMUNE PROPONENTE CENTRO VALLE INTELVI - COMUNI AGGREGATI CERANO D'INTELVI - SCHIGNANO CUP F99I22000130006

Comune di Cerano d'Intelvi - (CO)

Relazione di progetto impianti meccanici

RELAZIONE a cura di:	Studio ZPPR
COMMITTENTE	Comune di Cerano d'Intelvi
EDIFICIO	Immobile Ex Latteria di Veglio Via Fontana - Cerano d'Intelvi (CO)
DATA	Marzo 2024

INDICE

- 1 INFORMAZIONI GENERALI
- 2 DESCRIZIONE GENERALE DELL'IMPIANTO
- 3 ELEMENTI DELL'IMPIANTO
 - 3.1 GENERATORE DI CALORE
 - 3.2 SISTEMI DI EMISSIONE
 - 3.3 COLLETTORI
 - 3.4 TUBAZIONI
 - 3.5 VALVOLE E DETENTORI
 - 3.6 RUBINETTI, CURVE E T
- 4 DISPERSIONI TERMICHE DELL'EDIFICIO
- 5 PARAMETRI GENERALI DI CALCOLO
- 6 CORPI SCALDANTI
- 7 TUBAZIONI
- 8 COLLETTORI
- 9 IMPIANTO DI VENTILAZIONE MECCANICA CONTROLLATA (VMC)
- 10 IMPIANTO IDRICO SANITARIO

RIFERIMENTI NORMATIVI

Le norme di seguito elencate costituiscono i riferimenti principali sui quali si basa la metodologia di calcolo

D.M. 22-1-2008 n. 37	Regolamento concernente l'attuazione dell'articolo 11-quaterdecies, comma 13, lettera della legge n. 248 del 2 dicembre 2005, recante riordino delle disposizioni in materia di attività di installazione degli impianti all'interno degli edifici
UNI EN 1264-1-4	Sistemi radianti alimentati ad acqua per il riscaldamento e raffrescamento integrati nelle strutture
UNI EN 442-2	Radiatori e convettori - Parte 2: Metodi di prova e valutazione
UNI/TS 11300-1	Prestazioni energetiche degli edifici - Parte 1: Determinazione del fabbisogno di energia termica dell'edificio per la climatizzazione estiva ed invernale
UNI/TS 12831: 2008	Calcolo del carico termico di progetto invernale

Decreto 23-06-2022 (C.A.M.) – Criteri ambientali minimi per l'affidamento del servizio di Progettazione di interventi edilizi, per l'affidamento dei lavori per interventi edilizi e per l'affidamento congiunto di progettazione e lavori per interventi edilizi;

1. INFORMAZIONI GENERALI

L'intervento del presente progetto rientra al bando PNRR M1C3 - INVESTIMENTO 2.1 ATTRATTIVITA'DEI BORGHI STORICI:

"LA CULTURA CHE ACCOGLIE BORGHI COMACINI IN RETE" CUP F99I22000130006 3.1-LINEA DI AZIONE 1 - Intervento 10

"Manutenzione Straordinaria Immobile Veglio ex Latteria"

Comune di:	Cerano d`Intelvi	
Provincia:	СО	
Sito in:	Via Fontana	

Soggetti coinvolti

Committente

Progettista architettonico

Arch. Cristina Zili

Progettista degli impianti termici

Ing. Paolo Peduzzi

Direttore dei lavori per l'isolamento termico dell'edificio

Direttore dei lavori per la realizzazione degli impianti termici

Ing. Paolo Peduzzi

2. DESCRIZIONE GENERALE DELL'IMPIANTO

Nell'intervento di manutenzione straordinaria non viene coinvolto l'impianto di riscaldamento e produzione di acs; infatti verrà mantenuta la caldaia murale esistente a metano utilizzata per il riscaldamento e la produzione di acs. Il mantenimento della caldaia esistente è dovuto alla destinazione turistico/ricettiva accessibile ad una platea a bassa frequentazione. Pertanto, insieme all'Amministrazione si è convenuto di mantenere l'attuale impianto, prevedendo in un secondo tempo la possibile sostituzione. L'intervento relativo l'impianto di riscaldamento riguarda esclusivamente il posizionamento dei nuovi terminali di emissione nei locali oggetto di intervento.

3. ELEMENTI DELL'IMPIANTO

3.1 GENERATORE DI CALORE

La centrale che serve l'impianto idronico ha le seguenti caratteristiche.

Caldaia esistente Murale
Junker
Acqua
Metano

3.2 SISTEMI DI EMISSIONE

Per ciascun corpo scaldante vengono elencati le caratteristiche tecniche e i dettagli relativi alle condizioni nominali.

Num	Prodotto	Livello	Tipo	Q _n	n	V	G _{H2O}	ΔΡ
				[W]	[-]	[1]	[l/h]	[mmca]
1	Termoarredo a colonne in acciaio	Piano Seminterrato	Radiatore	769,0	1,22	7,7		
1	Termoarredo a colonne in acciaio	Piano Terra	Radiatore	547,0	1,22	3,7	-	
1	Termoarredo a colonne in acciaio	Piano Terra	Radiatore	1135,0	1,21	10,5		
2	Termoarredo a colonne in acciaio	Piano Terra	Radiatore	769,0	1,22	7,7		
1	Irsap	TESI3 - 865	Radiatore	72,8	1,31	1,3		
3	Termoarredo a colonne in acciaio	Piano Primo Sottotetto	Radiatore	547,0	1,22	3,7	-	

Legenda

Q_n: potenza termica resa

n: esponente della curva caratteristica

V: volume d'acqua

 G_{H2O} : portata d'acqua nominale ΔP : Perdita di carico nominale Costo: costo complessivo

Num	Produttore	Piano	Nome	Tipo	Qn	n	V	G _{H2O}	ΔΡ
					[W]	[-]	[1]	[l/h]	[mmca]
4	ventilConvettore	Seminterrato		VentilConv ettore	2010,0	1,00	0,4	-	
2	ventilConvettore	Primo		VentilConv ettore	2010,0	1,00	0,4	-	
7	ventilConvettore	Primo Sottotetto		VentilConv ettore	2010,0	1,00	0,4	-	-

Legenda

Q_n: potenza termica resa

n: esponente della curva caratteristica

V: volume d'acqua

G_{H2O}: portata d'acqua nominale

 ΔP : Perdita di carico nominale

Costo: costo complessivo

3.3 COLLETTORI

PARTENZE	Descrizione	Materiale	d	n deriv	ΔΡ
			[mm]	[-]	[Pa]
6	Collettore di distribuzione 3/4" - Piano Seminterrato	Rame	3/4"	11	-
8	Collettore di distribuzione 3/4" – Piano Terra	Rame	3/4"	11	-
12	Collettore di distribuzione 3/4" – Piano Primo	Rame	3/4"	11	-

Legenda

I: interasse derivazioni

d: diametro del collettore

n deriv: numero derivazioni

 ΔP : perdita di carico nominale

3.4 TUBAZIONI

Materiale	D _{int}	D _{est}
	[mm]	[mm]
Tubazione multistrato coibentata	26	52

Legenda

D_{int}: diametro interno

 D_{est} : diametro esterno

3.5 VALVOLE E DETENTORI

Produttore	Posizione	Materiale	K _{v001} [m ³ /h]	Filettatura
Valvola Termostatica	Valvola su tutti i termoarredo		242,00	1/2"

Legenda

 k_{V001} : portata d'acqua nominale

4. DISPERSIONI TERMICHE DELL'EDIFICIO

Per ogni zona e per ogni locale dell'edificio vengono riportate le dispersioni termiche per trasmissione e i ricambi d'aria in condizioni di picco, necessari per la determinazione del carico termico richiesto in ambiente.

Zona	Locale	Livello	Р	n	T _e	T _i	S	٧
ZONA	Locale	Livello	[W]	[1/h]	[°C]	[°C]	ſm ² 1	[m ³ 1
Ambulatorio Piano Seminterrato	ambulatorio		588	0,50	-7,4	20,0	13,34	36,01
Ambulatorio Piano Seminterrato	Disimpegno		83	0,50	-7,4	20,0	2,83	7,64
Ambulatorio Piano Seminterrato	ingresso	Piano	179	0,50	-7,4	20,0	2,81	7,57
Ambulatorio Piano Seminterrato	sala d'attesa	seminterrato	650	0,50	-7,4	20,0	12,27	45,40
Ambulatorio Piano Seminterrato	disimpegno 2		420	0,50	-7,4	20,0	6,12	22,70
Ambulatorio Piano Seminterrato	wc		310	0,50	-7,4	20,0	3,99	14,80
Ristorante	PT antibagno		351	0,50	-7,4	20,0	7,49	22,02
Ristorante	PT wc 1		534	0,50	-7,4	20,0	3,15	9,25
Ristorante	PT wc2		922	0,50	-7,4	20,0	4,82	14,18
Ristorante	spogliatoio	Piano Terra	690	0,50	-7,4	20,0	3,24	9,52
Ristorante	PT WC3		389	0,50	-7,4	20,0	2,59	7,61
Ristorante	Ripostiglio		698	0,50	-7,4	20,0	14,10	41,46
Camere	P1 Ingresso		366	0,50	-7,4	20,0	13,26	29,29
Camere	P1 Bagno 1		282	0,50	-7,4	20,0	5,05	17,50
Camere	P1 Camera 1		798	0,50	-7,4	20,0	21,61	57,69
Camere	P1 Camera 4		711	0,50	-7,4	20,0	18,41	38,42
Camere	P1 Bagno 3	Piano Primo	257	0,50	-7,4	20,0	7,24	16,20
Camere	P1 Camera 3	Sottotetto	433	0,50	-7,4	20,0	13,90	31,02
Camere	P1 disimpegno		96	0,50	-7,4	20,0	4,27	13,78
Camere	P1 Dis 1		59	0,50	-7,4	20,0	3,06	7,53
Camere	P1 Bagno 2		321	0,50	-7,4	20,0	6,06	12,51
Camere	P1 Camera 2		1.042	0,50	-7,4	20,0	28,64	66,32
Camere	Bagno 2		321	0,50	-7,4	20,0	6,08	23,80

Legenda

P: dispersioni termiche dell'involucro in condizioni di picco.

n: ricambi d'aria.

Te: temperatura esterna in condizioni di progetto

Ti: temperatura interna del locale

S: superficie del locale

V: volume netto del locale

5. PARAMETRI GENERALI DI CALCOLO

Il calcolo dell'impianto viene eseguito a partire dai seguenti parametri:

Piano Terra

Temperatura di mandata	80 °C
Dispersioni termiche per trasmissione	3.584,7 W
Dispersioni termiche per ventilazione	0,0 W
Dispersioni termiche totali	3.584,7 W
Velocità massima del fluido termovettore	0,02 m/s
Velocità minima del fluido termovettore	0,01 m/s

Piano Primo sottotetto

Temperatura di mandata	80 °C
Dispersioni termiche per trasmissione	4.686,0 W
Dispersioni termiche per ventilazione	559,6 W
Dispersioni termiche totali	5.245,6 W
Velocità massima del fluido termovettore	0,13 m/s
Velocità minima del fluido termovettore	0,01 m/s

6. CORPI SCALDANTI

Livello	Locale	Radiatori	N el	Carico	Magg	W_{r}	Wg	W _r /W _g
				[%]	[%]	[W]	[W]	[%]
ambulatorio	WC	R1	1	100	0	379	547	144
Bagni Bar ristorante	PT WC3	R2	1	100	0	389	547	140
	PT wc 1	R3	1	100	0	534	547	102
	spogliatoio	R1	1	100	0	690	807	117
	PT wc2	R4	1	100	0	922	936	102
sottotetto	P1 Bagno 1	R1	1	100	0	364	389	107
	P1 Bagno 2	R3	1	100	0	379	389	103
	P1 Bagno 3	R2	1	100	0	257	389	151

Legenda

Carico: percentuale di potenza dispersa dal locale a carico del radiatore

Magg: maggiorazione percentuale del carico

W_r: potenza richiesta dal locale

 W_g : potenza generata dal corpo scaldante

 $W_{r^{\prime}} \, W_{q}$: rapporto tra la potenza generata e la potenza del locale assegnata al radiatore

Livello	Locale	Ventilconvet tore	Carico	Magg	W _r	Wg	W _g /W _r
			[%]	[%]	[W]	[W]	[%]
	disimpegno 2	F4	100	0	526	832	158
	ambulatorio	F3	100	0	588	930	158
ambulatorio	Disimpegno	F2	100	0	83	131	158
	sala d'attesa	F1	100	0	861	1.363	158
Bagni Bar	Ripostiglio	F2	100	0	698	1.104	158
ristorante	PT antibagno	F1	100	0	351	555	158
	P1 Ingresso	F4	100	0	366	579	158
	P1 Camera 2	F5	50	0	675	1.069	158
	P1 Camera 2	F6	50	0	675	1.069	158
Primo sottotetto	P1 Camera 4	F1	100	0	711	1.125	158
	P1 Camera 1	F2	50	0	399	631	158
	P1 Camera 1	F3	50	0	399	631	158
	P1 Camera 3	F7	100	0	433	685	158

Legenda

Carico: percentuale di potenza dispersa dal locale a carico del radiatore

Magg: maggiorazione percentuale del carico

W_r: potenza richiesta dal locale

 $\mathbf{W}_{\mathbf{g}}$: potenza generata dal corpo scaldante

 $W_{g^{\prime}} \, W_r$: rapporto tra la potenza generata e la potenza del locale assegnata al radiatore

7. TUBAZIONI

Tubo	Piano	Materiale	Ø	Lung	Portata	Velocità	Δp distr
			[mm]	[m]	[l/h]	[m/s]	[mm c.a.]
T1	Piano		33,2 mm	0,43	30,1	0,0	0,0
T2	seminterr ato		33,2 mm	1,91	21,7	0,0	0,0
T3	ato	Tubazione multistrato coibentata	33,2 mm	6,65	33,7	0,0	0,2
T4			33,2 mm	4,80	4,8	0,0	0,0
T5			33,2 mm	7,23	49,4	0,0	0,3
T1			33,2 mm	4,50	39,6	0,0	0,1
T2			33,2 mm	4,88	22,3	0,0	0,1
T3	Piano	Tubazione multistrato coibentata	33,2 mm	8,78	52,8	0,0	0,4
T4	Primo		33,2 mm	6,57	30,6	0,0	0,2
T5			33,2 mm	2,86	40,0	0,0	0,1
T6			33,2 mm	4,36	20,1	0,0	0,1
T1			32,0 mm	9,44	22,9	0,0	0,2
T2			33,2 mm	4,50	20,8	0,0	0,1
T3			33,2 mm	3,02	21,0	0,0	0,1
T4			33,2 mm	3,75	22,9	0,0	0,1
T5			33,2 mm	11,54	40,8	0,0	0,4
T6	Primo sottotetto	Tubazione multistrato coibentata	33,2 mm	7,84	14,7	0,0	0,1
T7			33,2 mm	6,35	24,8	0,0	0,1
T8			33,2 mm	7,08	38,7	0,0	0,2
Т9			33,2 mm	3,01	38,7	0,0	0,1
T10			33,2 mm	2,59	267,1	0,1	2,5
T11			33,2 mm	3,94	21,7	0,0	0,1

 Δp distr: perdite di carico distribuite lungo le tubazioni

8. COLLETTORI

Livello	Collettore	Locale	Perdita[m]	Portata[l/h]
ambulatorio	Collettore PS – 6 partenze	wc	0,95	21,7
		sala d'attesa	0,60	49,4
		Disimpegno	0,04	4,8
		ambulatorio	0,37	33,7
Bagni Bar ristorante	Collettore PP – 8 partenze	disimpegno 2	0,02	30,1
		PT WC3	1,11	22,3
		PT wc 1	2,09	30,6
		PT wc2	5,99	52,8
		PT antibagno	0,15	20,1
		Ripostiglio	0,19	40,0
Primo sottotetto		P1 Bagno 1	0,97	20,8
		P1 Bagno 3	0,60	14,7
		P1 Bagno 2	1,03	21,7
		P1 Camera 4	0,79	40,8
		P1 Camera 1	0,45	22,9
	Collettore PP – 12 partenze	P1 Camera 1	0,14	22,9
		P1 Ingresso	0,11	21,0
		P1 Camera 2	0,19	38,7
		P1 Camera 2	0,46	38,7
		P1 Camera 3	0,26	24,8

Legenda

Perdita: perdita a carico dell'anello Portata: portata a carico dell'anello

9. IMPIANTO DI VENTILAZIONE MECCANICA CONTROLLATA (VMC)

Tutte le camere saranno dotate di impianto di recuperatore di calore puntiforme. Il recuperatore è provvisto di uno scambiatore di calore di tipo ceramico che accumula calore durante l'estrazione d'aria proveniente dal locale, mentre durante la fase di immissione di aria dall'esterno, l'apparecchio cede all'aria fredda in ingresso il calore immagazinato nello scambiatore. La portata d'aria alla velocità max è di 60mc/h.

10. IMPIANTO IDRICO SANITARIO

L' immobile è collegato all'acquedotto comunale e la nuova rete di distribuzione deriverà dalla tubazione esistente previa verifica del funzionamento e dell'efficienza del filtro e del riduttore di pressione esistenti.

Le tubazioni principali di distribuzione saranno in multistrato preisolato idoneo per il convogliamento dell'acqua potabile.

Gli apparecchi sanitari saranno in porcellana dura (vitreous-china) e dovranno essere di prima scelta, con superficie perfettamente liscia senza alcuna deformazione o forma di cavillatura. Il valvolame impiegato per gli impianti idrici sarà in grado di assicurare la perfetta tenuta nel tempo. Ogni apparecchio sarà provvisto di: tubo di collegamento con le condutture di adduzione, tubo di collegamento con le condutture di scarico munito di rosone a muro o pavimento, sifone di facile ispezione, valvole di intercettazione per la manutenzione. I prodotti ceramici in vetrochina devono avere una copertura a smalto durissimo con cottura a 1300 · C che assicuri l'assenza di cavillabilità. Tutti gli apparecchi si intendono non colorati.

Per il fissaggio, devono essere utilizzate esclusivamente strutture idonee per pareti in muratura ed è fatto assoluto divieto di utilizzare tasselli in legno, in piombo o altri di scarsa resistenza. Il valvolame impiegato per gli impianti idrici sarà in grado di assicurare la perfetta tenuta nel tempo. I collegamenti idraulici verranno realizzati con tubazioni e materiali accessori conformi alla normativa vigente, completi di valvole d'intercettazione, valvole di ritegno ed ogni accessorio utile per la loro installazione a regola d'arte ed il corretto funzionamento.

In particolare, le tubazioni saranno in acciaio zincato o multistrato con isolamento termico di idoneo spessore. Tutti gli organi di manovra delle valvole saranno dotati di prolunga per garantire la funzionalità senza interrompere e danneggiare l'isolamento. Tutti i rubinetti di arresto sono del tipo a sfera a passaggio integrale.

La rubinetteria dei lavabi sarà temporizzata ed elettronica con interruzione del flusso d'acqua e a basso consumo d'acqua, (6l/min), secondo la norma EN 816 e UNI EN 15091.

La rubinetteria delle docce sarà temporizzata ed elettronica con interruzione del flusso d'acqua e a basso consumo d'acqua, (8l/min), secondo la norma EN 816 e UNI EN 15091.

Gli apparecchi sanitari saranno con cassette a doppio scarico aventi scarico completo di massimo 6 l e scarico ridotto di massimo 3 l.

Per ogni servizio igienico per disabile, dovranno essere installati tutti i componenti necessario al superamento delle barriere architettoniche, quali maniglioni verticali, orizzontali, angolari e sedile per doccia; i lavabi dovranno essere privi di colonna e permettere la rotazione della carrozzina.

I fabbisogni idrici saranno i seguenti:

Fabbisogno	150 litri/giorno *		UNI 9182	
giornaliero di acqua	persona	900 litri / giorno		
fredda sanitaria				
Fabbisogno			UNI TS 11300-2	
giornaliero di acqua	40 litri/giorno * persona	240 litri / giorno	(rif. Dormitori,	
calda sanitaria (40°C)	-	_	Residence e B&B)	

Pressione di utilizzo: la pressione dell'acqua nei punti di utilizzo sarà compresa tra 1,5 bar nel punto più sfavorevole e 4,0 bar nel punto più favorito.

Velocità massima nei circuiti:

- -distribuzione primaria: max 2 m/s;
- -linea alla singola utenza: max 4 m/s.

Alle varie utenze idriche saranno garantite le portate minime in conformità alla Norma UNI 9182 vigenti. In particolare:

vaso con cassetta lt/sec 0,10

lavabo lt/sec 0,10 doccia lt/sec 0,15

Ai sensi del Decreto 23/06/2022 (C.A.M.), inoltre, dovranno essere garantite le seguenti portate massime per ogni apparecchio, tramite limitatori della portata:

- 6 I/min per lavandini, lavabi e bidet (UNI EN 816, UNI EN 15091);
- 8 l/min per docce temporizzata con ciclo di 30 secondi (UNI EN 816, UNI EN 15091);
- 6 I scarico completo, 3 I scarico ridotto per apparecchi sanitari con cassetta a doppio scarico.

L'impianto di distribuzione del fluido termovettore e dell'acqua sanitaria sarà costituito da tubazioni in multistrato preisolate installate nel sottofondo del pavimento, con partenze da collettori intercettabili su ogni singolo circuito.

La rete acque nere è esistente e collegata alla pubblica fognatura. Non è previsto il rifacimento della stessa. Tutti gli scarichi dei nuovi apparecchi sanitari verranno realizzati con tubazioni in polietilene ad alta densità, completi di braghe, pezzi di allacciamento, manicotti, curve e tutto quanto necessario per la corretta posa in opera e funzionalità e non dovranno avere pendenze inferiori all'1%.

Le tubazioni dovranno essere isolate secondo le modalità previste dall'Allegato B del DPR 412/93. Le tubazioni delle reti di distribuzione dei fluidi caldi in fase liquida o vapore degli impianti termici devono essere coibentate con materiale isolante il cui spessore minimo è fissato dalla seguente tabella in funzione del diametro della tubazione espresso in mm e della conduttività termica utile del materiale isolante espressa in W/m° C alla temperatura di 40° C.